1,821 research outputs found

    Gas flow environmental and heat transfer nonrotating 3D program

    Get PDF
    A complete set of benchmark quality data for the flow and heat transfer within a large rectangular turning duct is being compiled. These data will be used to evaluate and verify three dimensional internal viscous flow models and computational codes. The analytical objective is to select such a computational code and define the capabilities of this code to predict the experimental results. Details of the proper code operation will be defined and improvements to the code modeling capabilities will be formulated

    Breakdown of the classical double copy for the effective action of dilaton-gravity at NNLO

    No full text
    We demonstrate that a recently proposed classical double copy procedure to construct the effective action of two massive particles in dilaton-gravity from the analogous problem of two color charged particles in Yang-Mills gauge theory fails at next-to-next-to-leading orders in the post-Minkowskian (3PM) or post-Newtonian (2PN) expansions

    Fourth post-Newtonian effective-one-body Hamiltonians with generic spins

    No full text
    In a compact binary coalescence, the spins of the compact objects can have a significant effect on the orbital motion and gravitational-wave (GW) emission. For generic spin orientations, the orbital plane precesses, leading to characteristic modulations of the GW signal. The observation of precession effects is crucial to discriminate among different binary formation scenarios, and to carry out precise tests of General Relativity. Here, we work toward an improved description of spin effects in binary inspirals, within the effective-one-body (EOB) formalism, which is commonly used to build waveform models for LIGO and Virgo data analysis. We derive EOB Hamiltonians including the complete fourth post-Newtonian (4PN) conservative dynamics, which is the current state of the art. We place no restrictions on the spin orientations or magnitudes, or on the type of compact object (e.g., black hole or neutron star), and we produce the first generic-spin EOB Hamiltonians complete at 4PN order. We consider multiple spinning EOB Hamiltonians, which are more or less direct extensions of the varieties found in previous literature, and we suggest another simplified variant. Finally, we compare the circular-orbit, aligned-spin binding-energy functions derived from the EOB Hamiltonians to numerical-relativity simulations of the late inspiral. While finding that all proposed Hamiltonians perform reasonably well, we point out some interesting differences, which could guide the selection of a simpler, and thus faster-to-evolve EOB Hamiltonian to be used in future LIGO and Virgo inference studies

    An improved effective-one-body Hamiltonian for spinning black-hole binaries

    Full text link
    Building on a recent paper in which we computed the canonical Hamiltonian of a spinning test particle in curved spacetime, at linear order in the particle's spin, we work out an improved effective-one-body (EOB) Hamiltonian for spinning black-hole binaries. As in previous descriptions, we endow the effective particle not only with a mass m, but also with a spin S*. Thus, the effective particle interacts with the effective Kerr background (having spin S_Kerr) through a geodesic-type interaction and an additional spin-dependent interaction proportional to S*. When expanded in post-Newtonian (PN) orders, the EOB Hamiltonian reproduces the leading order spin-spin coupling and the spin-orbit coupling through 2.5PN order, for any mass-ratio. Also, it reproduces all spin-orbit couplings in the test-particle limit. Similarly to the test-particle limit case, when we restrict the EOB dynamics to spins aligned or antialigned with the orbital angular momentum, for which circular orbits exist, the EOB dynamics has several interesting features, such as the existence of an innermost stable circular orbit, a photon circular orbit, and a maximum in the orbital frequency during the plunge subsequent to the inspiral. These properties are crucial for reproducing the dynamics and gravitational-wave emission of spinning black-hole binaries, as calculated in numerical relativity simulations.Comment: 22 pages, 9 figures. Minor changes to match version accepted for publication in PR

    Spin effects on the dynamics of compact binaries

    Get PDF
    Compact binaries are the most promising source for the advanced gravitational wave detectors, which will start operating this year. The influence of spin on the binary evolution is an important consequence of general relativity and can be large. It is argued that the spin supplementary condition, which is related to the observer dependence of the center, gives rise to a gauge symmetry in the action principle of spinning point-particles. These spinning point-particles serve as an analytic model for extended bodies. The internal structure can be modelled by augmenting the point-particle with higher-order multipole moments. Consequences of the recently discovered universal (equation of state independent) relations between the multipole moments of neutron stars are discussed

    Viscous wing theory development. Volume 1: Analysis, method and results

    Get PDF
    Viscous transonic flows at large Reynolds numbers over 3-D wings were analyzed using a zonal viscid-inviscid interaction approach. A new numerical AFZ scheme was developed in conjunction with the finite volume formulation for the solution of the inviscid full-potential equation. A special far-field asymptotic boundary condition was developed and a second-order artificial viscosity included for an improved inviscid solution methodology. The integral method was used for the laminar/turbulent boundary layer and 3-D viscous wake calculation. The interaction calculation included the coupling conditions of the source flux due to the wing surface boundary layer, the flux jump due to the viscous wake, and the wake curvature effect. A method was also devised incorporating the 2-D trailing edge strong interaction solution for the normal pressure correction near the trailing edge region. A fully automated computer program was developed to perform the proposed method with one scalar version to be used on an IBM-3081 and two vectorized versions on Cray-1 and Cyber-205 computers
    • …
    corecore